ETH官方钱包

前往
大廳
主題

分享: 英文學(xué)測15級(jí),分科96的真實(shí)實(shí)力再上升 ???

飲熵滿濁 | 2024-03-30 20:59:11 | 巴幣 2 | 人氣 147

如題,在此就不誨言了,我的國內(nèi)英文測驗(yàn)?zāi)芰Υ蟾啪褪桥_(tái)灣高中生頂流
可能就會(huì)有人有疑問,這樣的實(shí)力拿出去國外,究境是落在什麼水準(zhǔn)?
在網(wǎng)上與外國人交流後,發(fā)現(xiàn)答案是:

隨便一個(gè)俄羅斯中年大叔,可能都可以把你吊打 !


不可否認(rèn)的,我有快速的克漏字,單字實(shí)力,然而,這些顯然比不上長年在歐洲每日接受拉丁文字洗禮的人們。比方說,現(xiàn)在打開維基百科「捷克經(jīng)濟(jì)」英文頁面:


你會(huì)說:「啊這我每個(gè)字都看得懂!」
對(duì),看得懂,但看得夠快嗎?
當(dāng)文字出現(xiàn)在你眼前時(shí),相對(duì)應(yīng)的圖象能出現(xiàn)在現(xiàn)前嗎? 還是只是只現(xiàn)中文的翻譯?
當(dāng)看完文章後,記得起來嗎? 能一字不漏地像閱讀中文一樣舉出一句或兩句話嗎?

或許你可以,但我不行。
至少,在我下定決心再次提升英文前,上面沒有一個(gè)是做得到的。

○再舉個(gè)更高級(jí)的例子:
這有一篇介紹神經(jīng)網(wǎng)絡(luò)訓(xùn)練的文章:https://github.com/official-stockfish/nnue-pytorch/blob/master/docs/nnue.md
以下是截錄:

Feature set

When choosing a feature set it might be tempting to go into complicated domain-specific knowledge, but the costs associated make simpler solutions more attractive. HalfKP, explained in detail later, is very simple, fast, and good enough. More sophisticated feature sets have been tried but they usually cannot combat the hit on performance. HalfKP features are easy to calculate, and change little from position to position.
Size also has to be considered. For the 256x2->32->32->1 architecture HalfKP inputs require about 10 million parameters in the first layer, which amounts to 20MB after quantization. For some users it might not be an issue to have a very large set of features, with possibly hundreds of millions of parameters, but for a typical user it's inconvenient. Moreover, increasing the feature set size may reduce the training speed for some implementations, and certainly will require more time to converge.

First set of hidden neurons

The number of outputs in the first layer is the most crucial parameter, and also has the highest impact on speed and size. The costs associated with this parameter are two-fold. For one, it increases the number of operations required when updating the accumulator. Second, for optimized implementations, one must consider the number of available registers - in Stockfish going past 256 neurons requires multiple passes over the feature indices as AVX2 doesn't have enough registers. It also partially determines the size of the first dense linear layer, which also greatly contributes to the total cost.

Further layers

Unlike in typical networks considered in machine learning here most of the knowledge is stored in the first layer, and because of that adding further small layers near the output adds little to accuracy, and may even be harmful if quantization is employed due to error accumulation. NNUE networks are kept unusually shallow, and keeping the size of the later layers small increases performance.


以上的問題變得更加嚴(yán)重,第一次看得時(shí)候跟本無從下手,也看了看面忘了後面,整篇不知道在說什麼。但其實(shí)翻成中文的話,以高中生其實(shí)是有能力看得懂的。因此,我下定決心,要將英文上升新的檔次。


總結(jié)一下原因:
  1. 高中學(xué)習(xí)英文時(shí),多半是整篇文章的純文字學(xué)習(xí)。然而,語言是現(xiàn)實(shí)世界的抽象化,需要有圖像的借助才會(huì)更加清晰,「聽到中文會(huì)有圖像、情境,英文也就跟著會(huì)有」的概念是不對(duì)的,因?yàn)槲覀儊K沒有建立起 「英文 ? 圖像 」的反射關(guān)係。
  2. 國內(nèi)的考試文章篇短,因此閱讀上不會(huì)需要太多短期記憶的藉助。然而,真正的英文文章長度可能是數(shù)倍,需要大腦更多的暫存空間來儲(chǔ)文章概念。我們平常閱讀時(shí)也會(huì)儲(chǔ)存中文文章概念,然而,這與英文其實(shí)是相似卻不能互補(bǔ)的。當(dāng)閱讀英文時(shí),你其實(shí)是在用英文的語意、邏輯在思考,不太能可鬼轉(zhuǎn)中文。
  3. 當(dāng)看到一篇文章時(shí),一眼看出想傳達(dá)的概念是很重要的。如果你瞄到「黑洞」、「重力」、「時(shí)空」,那很大可能這是一篇有關(guān)相對(duì)論的文章,但我們辦識(shí)英文字的速度遠(yuǎn)較中文慢,以致會(huì)有見樹不見林的問題。
以下是我的解決方法,在半年內(nèi)提升到可以用全英文給presentation、無痛閱讀所有英文報(bào)章雜誌與 youtube。


1. 有聲書
這半年內(nèi)我聽完地方圖書館內(nèi)所有的中級(jí)-高級(jí)英文有聲書,包括哈利波特、魔戒、飢餓遊戲、暮光之城,睡前聽效果最好,一開始聽不懂沒關(guān)係,就「懵聽」! 等到大腦習(xí)慣了之後,自然而然就抓得單字、句字,漸漸的,隨著故事的發(fā)展,情境、圖像的概念就會(huì)出來,文字所帶給你的情感也會(huì)越來越深。
推薦網(wǎng)站 https://www.listennotes.com/, Youtube
其實(shí)只要網(wǎng)路上隨便打 XXX audiobook 就會(huì)出現(xiàn)一大堆,挑喜歡的小說聽下去就對(duì)了。

2. 加入discord亂聊
這真的超有用,加入幾個(gè)你有興趣的外國人群(不要那種大雜燴語言學(xué)習(xí)群就是了,難以持久且多在亂聊),認(rèn)真的和裡面的人對(duì)話,用你學(xué)過的文法、單字把每個(gè)句字都儘量寫正確。幾天之後,你就會(huì)發(fā)現(xiàn)你的翻譯寫作能力大副提升,同時(shí),為了要趕上外國人的對(duì)話速度,也會(huì)訓(xùn)練到文字的理解速度。只不過要注意文化的差意,老外的對(duì)話環(huán)境不像臺(tái)灣一樣自由、可亂開玩笑,你開某人某黨某國人玩笑他們可是會(huì)很嚴(yán)肅地看待的。

3. 寫個(gè)程式吧
或許不是每個(gè)人都對(duì)這有興趣,但都AI時(shí)代了,多少接觸一點(diǎn)吧。Coding是一個(gè)幾乎是全英文的生態(tài)圈,在寫code的時(shí)候,時(shí)常會(huì)遇到要查Documentation(說明書)的情況,這時(shí),就很考驗(yàn)「抓重點(diǎn)」與「記憶」的能力。運(yùn)常,Doc都寫得非常簡潔,但條列非常繁雜,讀它的過程會(huì)訓(xùn)練出在茫茫字海中抓到你想要的句子的能力。同時(shí),你也會(huì)學(xué)會(huì)一次記下許多行,整理消化的功夫。同時(shí)為了看教學(xué),你會(huì)很頻繁的上Youtube查找影片,間接強(qiáng)迫用英文思考、學(xué)習(xí),又可建立 英文?影像 的重要關(guān)係。

4. 試著在72小時(shí)內(nèi)刷完一本文法書
各位都知道怎麼背單字,因此不加贅述,然而,文法卻是高中常常忽略的重點(diǎn)。其實(shí)文法一點(diǎn)都不難,它只是規(guī)則的條列,加上英文的文法其實(shí)滿有邏輯,很快的看完一本然後寫題目其實(shí)是一點(diǎn)也不難的。
建議寫「文字?jǐn)⑹龆喽浑s」的書,不要條式也不要刷字?jǐn)?shù)版面的。老外其實(shí)也沒什麼在管文法,但該有的還是要有,因此太細(xì)節(jié)的可以忽略,抓到幾個(gè)重點(diǎn)就熟能生巧了。


其實(shí),我是理組的,覺得學(xué)英文非常無聊。
然而,有好的英文能力真的會(huì)讓你的視野增大許多,畢境繁中的環(huán)境實(shí)在太小了,你也會(huì)發(fā)現(xiàn),語言其實(shí)一點(diǎn)都不難。隨便一個(gè)美國3歲小孩都能說得很流利了,更何況是在座呢?




創(chuàng)作回應(yīng)

更多創(chuàng)作